

ABO and H Blood Group Systems

Dr Ali Maleki PhD in Laboratory Hematology & Transfusion Sciences

Ali.maleki@kums.ac.ir Maleki.hem@gmail.com

Intoduction

- □ A blood group (BG) system.
 - $\checkmark \quad \frac{\text{antigens produced by alleles at a single genetic locus or at loci so closely}{\text{linked that genetic crossing over rarely occurs}}$
- **BG** antigens are molecules located primarily on RBC membrane.
 - These molecules can be.
 - Cell surface 1. **Proteins** Glycolipid 2. GPA*1(MNS) GPB*2(MNS) Carbohydrates (ABO) (Lewis) Band 3 (Diego) Glycoprotein 3. Rh Glycoprotein Rh Polypeptide (n_{0}) $0 \land \land 0 \land 0 \land 0$ Lipid bilayer 3000005 2000005 4.2 Ankyrin Actin Spectrin tetramer *1 Glycophorin A Cell content *2 Glycophorin B

Intoduction

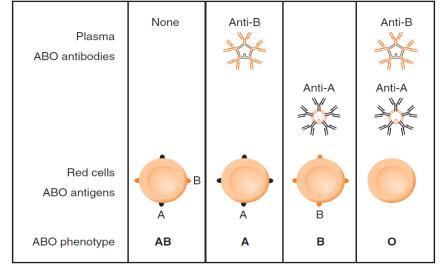
- With adequate immunologic exposure ~ a BG Ag may elicit production of Ab (in individuals who lack Ag)
 - Example: during transfusions
- □ ISBT has assigned genetically based numeric designations for RBC Ags
 - ✓ Presently it has defined 36 BG systems
- According to ISBT criteria \bigcirc genetic studies and serologic data are required before an Ag is assigned to a BG system.
 - ✓ ABO BG system \rightarrow ISBT number 001 with 4 Ags.
 - ✓ H BG system \rightarrow ISBT number 018 with 1 Ag.

Examples of ISBT Blood Group System Assignments

BLOOD SYSTEM NAME	ISBT GENE NAME	ISBT NUMBER
ABO	ABO	001
MNS	MNS	002
P1PK	P1	003
Rh	RH	004
Lutheran	LU	005
Kell	KEL	006
Lewis	LE	007
Duffy	FY	008
Kidd	JK	009
Diego	DI	010

ABO blood group system

- Discovery: by Landsteiner in 1900 \rightarrow in a series of experiments designed to show serologic incompatibilities between humans
 - ✓ He described blood groups as A, B, and O.
 - ✓ Several years later \rightarrow von Decastello added group AB.



□ Landsteiner noted the presence of <u>agglutinating Abs</u> in serum of individuals who lacked the corresponding ABO antigen.

Relationship between ABO Ags and Abs

Landsteiner's rule (or Landsteiner's law)

- **group A** RBCs \rightarrow possess A- Ag, lack B- Ag \Rightarrow possess anti-B Abs
- **group B** RBCs \rightarrow possess B- Ag, lack A- Ag \Rightarrow possess anti-A Abs

ABO BG system.

- / the first BG system to be described
- ✓ the most important BG system for transfusion purposes.
 - ◆ accurate donor and recipient ABO types are fundamental to transfusion safety
 ∽ transfusion of ABO-incompatible blood to a recipient can result in IVhemolysis ⇒ an acute hemolytic transfusion reaction.

ABO and H blood group system antigens

ABO antigens are found.

- 1. in association with cellular membranes.
 - ✓ RBCs ∽ exist as either glycolipid or glycoprotein
 - lymphocytes & PLTs <>> adsorbed from plasma
 - most epithelial and endothelial cells
 - ✓ organs such as kidneys
- 2. Soluble forms \rightarrow can also be synthesized and secreted by tissue cells
 - ✓ detected in secretions and body fluids (except CSF)
 - ✓ are primarily glycoproteins

ABO and H blood group system antigens

ABO antigens.

П

- \checkmark are detectable at 5–6 weeks in utero
- ✓ <u>newborns</u> possesses fewer Ag copies per RBC (compared with adults)
 - Newborns' RBCs \rightarrow also lack the fully developed Ag structures of adults' RBCs
- ✓ In cord blood → ABO Ags have fewer numbers and partially developed Ag structures ∽ may demonstrate weaker ABO phenotyping reactions.

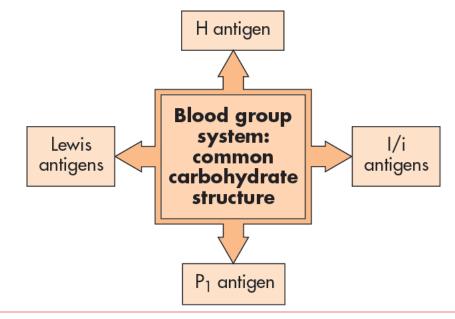
Ag development \rightarrow occurs slowly

full expression of adult levels is reached at $\sim 2-4$ years of age

ABO and H blood group system antigens

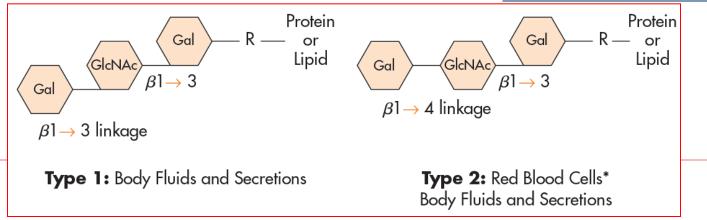
ABO phenotype frequencies \bigcirc differ in populations and ethnic groups.

• Example: group <u>B</u> has a <u>higher frequency</u> in <u>blacks</u> and Asians (compared with whites)


Frequency Distributions of ABO Phenotypes (U.S. Population)					
ABO PHENOTYPE	WHITE (%)	BLACK (%)	ASIAN (%)		
А	40	27	28		
В	11	20	27		
AB	4	4	5		
0	45	49	40		

Inheritance and formation of ABO antigens

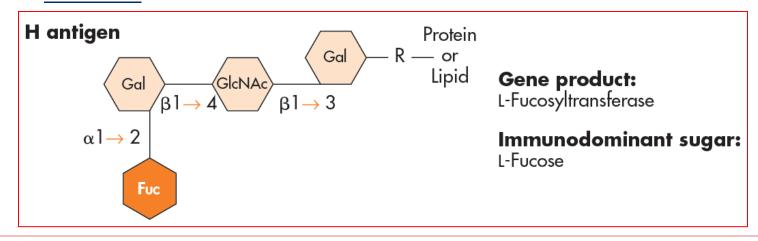
- $\Box \quad \underbrace{\text{Occurrence and location of ABO antigens} \rightarrow \text{influenced by 3 independent}}_{\text{loci: ABO, H, Se.:}}$
 - 1. H gene (Ch. 19):
 - ✓ Controls production of H Ag ∽ inherited independent of ABO antigens
 - 2. ABO genes (Ch. 9)
 - Controls production of A, B, AB, O Ags
 - 3. <u>Se gene (Ch. 19)</u>
 - ✓ expression of soluble ABO Ags → is influenced by inheritance of Se gene (in addition to ABO and H genes) ∽ genetically influences formation of ABO Ags in saliva, tears, and other body fluids.


Inheritance and formation of ABO antigens

- □ ABO Ags → assembled on a common carbohydrate structure @ it also is a base for formation of H, Lewis, I/i, P1 antigens.
 - ✓ this common carbohydrate structure \rightarrow is capable of Ag expression for >1 BG system.
 - ✓ the action of genes of one BG system \rightarrow can affect expression of Ags in another system.

Common Structure for A, B, H Antigens

- Common structure (Ag building block) for A, B, H Ags \rightarrow an oligosaccharide chain attached to a protein or a lipid carrier molecule.
 - \checkmark comprises 4 sugar molecules \rightarrow linked in linear or branching forms
- □ The 2 terminal sugars ☞ D-galactose (Gal) and N-acetylglucosamine (GLcNAc), may be linked together in 2 different linkages.
 - 1. Linkage: $\beta 1 \rightarrow 3$ (C1 of Gal is linked with C3 of GLcNAc) \rightarrow Type 1 oligosaccharide chains \frown associated primarily with body fluids
 - 2. Linkage: $\beta 1 \rightarrow 4$ (C1 of Gal is linked with C4 of GLcNAc) \rightarrow Type 2 oligosaccharide chains \bigcirc are associated primarily with glycolipids and glycoproteins on <u>RBC</u> membrane
 - ✓ Some type 2 glycoprotein structures \rightarrow are located in body fluids & secretions.



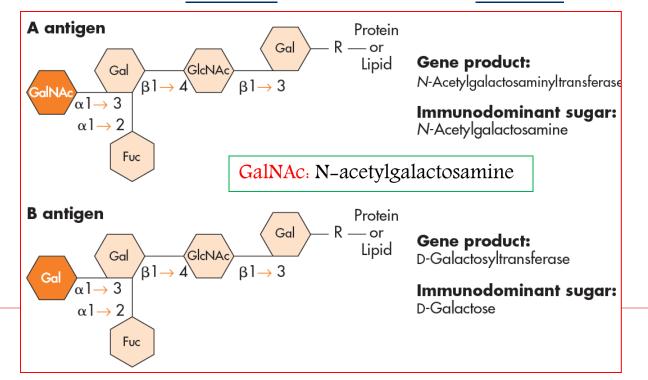
Development of H Antigen

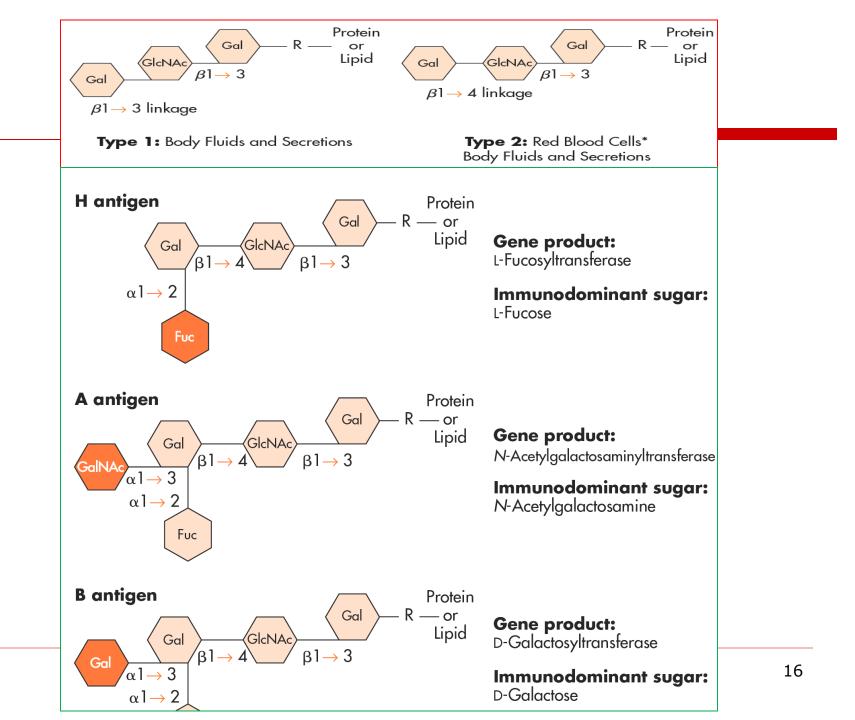
 \square H Ag \rightarrow is the only Ag in H BG system (Ch. 19, closely linked with Se locus)

✤ H locus has 2 alleles.

- 1. H allele \rightarrow is dominant, with high frequency (>99.99%)
- 2. h allele is \rightarrow is amorph, with rare frequency
- product of H allele is: L-fucosyltransferase (FUT-1) transfers a L-fucose, to type 1 & 2 common oligosaccharide chains (added to terminal Gal)
 - ✓ FUT-1 → adds L-fucose to both oligosaccharide chains: on <u>RBCs</u> and in secretions.

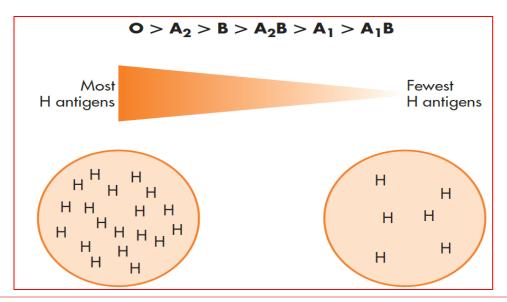
Development of H Antigen

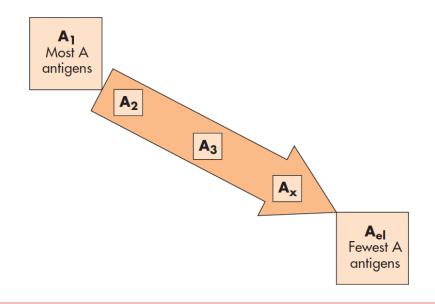

 $\Box \quad L-fucose \rightarrow the immunodominant sugar for H antigens$


- Formation of H Ag r is crucial to expression of A & B Ags (as an acceptor molecule)
- ☐ h allele is with no detectable gene product ∽ RBCs from hh genotype classified as Bombay phenotype.
 - ✓ These rare individuals lack H and ABO antigen expression on their RBCs.

Development of A & B Antigens

П

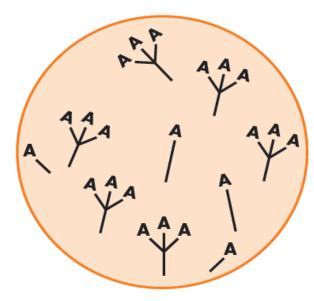

- Three major alleles exist within ABO locus (Ch. 9): A, B, O:
 - 1. A allele → produces N-acetylgalactosaminyltransferase ∽ transfers GalNAc to H antigen.
 - 2. B allele \rightarrow produces D-galactosyltransferase \bigcirc transfers D-Gal to H antigen
 - 3. O allele \rightarrow is nonfunctional \bigcirc gene product is an enzymatically inactive protein \Rightarrow O RBCs carry no A or B antigens \bigcirc but are rich in H antigens.



Development of A & B Antigens

- \checkmark N-acetylgalactosamine \rightarrow the immunodominant sugar for A specificity
- ✓ D-galactose \rightarrow the immunodominant sugar for B specificity
- Adult group $O \operatorname{RBCs} \rightarrow$ have about 1.7 million H-Ag copies / RBC (greatest concentration of H Ags)
 - ✓ Other ABO phenotypes → have fewer copies of H antigens \bigcirc Group A₁B possesses the lowest number of unconverted H sites.

- ABO subgroups differ in.
 - 1. quantitative difference \rightarrow amount of Ag expressed on RBC membrane
 - 2. qualitative differences in antigen expression
 - ✓ some subgroups possess more highly branched forms of Ag
 - ✓ others have simplified linear forms of Ag

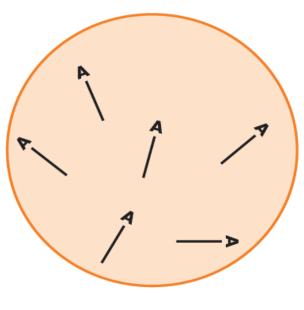

- **group** $A \rightarrow$ is classified into 2 major subgroups. A1 and A2
 - ✓ differ slightly in their glycosyltransferase ability to convert $H \rightarrow A Ag$.
- □ A_1 phenotype \rightarrow encoded by A_1 gene \rightarrow exists in ~80% of A individuals \bigcirc A-Ags are highly concentrated \rightarrow on branched and linear oligosaccharide chains
 - ✓ A1 gene effectively acts on H-Ag in production of A-Ag
- □ A_2 phenotype \rightarrow encoded by A_2 gene \rightarrow constitutes ~20% of group A individuals \bigcirc A-Ag copies: in $A_2 < A_1$ phenotype
 - A_2 phenotype is assembled on linear forms of oligosaccharide chains.
- Allo-anti- A_1 , can be detected in:
 - ✓ 1-8% of A_2 individuals
 - ✓ 22–35% of A_2 B individuals

both $A_1 \& A_2$ RBCs agglutinate with commercially anti-A reagents

- ★ <u>A₁ & A₂</u> RBCs can be distinguished → only with Dolichos biflorus lectin.
 ✓ This lectin possesses anti-A1 specificity.
 - diluted Dolichos biflorus lectin (anti-A₁ lectin) agglutinates A₁, but not A₂, RBCs.

\Box Anti-A₁ lectin.

- ✓ not used in routine ABO testing (of donors and recipients)
 - it is unnecessary to distinguish between A₁ and A₂ phenotypes for transfusion purposes
- ✓ is useful in.
 - resolving ABO typing problems
 - identifying infrequent subgroups of A


A₁ Phenotype

Branched A antigens

2 million A antigens/adult red cells

Positive with anti-A

Positive with anti-A1 lectin

A₂ Phenotype

Linear A antigens

500,000 A antigens/adult red cells

Positive with anti-A

Negative with anti-A1 lectin

Additional Subgroups of A & B

- are genetically controlled by rare alleles at ABO locus (<1% frequency)
- amount of H-Ag present on weak subgroups of A \rightarrow is usually equivalent to group O RBCs (3+ to 4+ reactions)
 - Serologic classification of rare A subgroups is determined by:
 - ✓ Weak or no RBC agglutination \rightarrow with anti-A & anti-A,B commercial reagents
 - ✓ No agglutination \rightarrow with anti-A₁
 - ✓ Presence or absence of \rightarrow anti-A₁ in serum
 - ✓ Strong agglutination \rightarrow with anti-H
 - ✓ Presence of A and $H \rightarrow$ in saliva
 - ✓ Adsorption and elution studies \rightarrow for presence of A-Ag

Additional Subgroups of A and B

- \Box Weak A-subgroups \rightarrow are difficult to classify using serologic techniques
 - definitive classification @ molecular techniques
- B-subgroups:
 - ✓ are rarer than A-subgroups
 - $\checkmark \quad \text{demonstrate weak or no agglutination} \rightarrow \text{with anti-B reagents}$

	RED CELL AGGLUTINATION WITH					
SUBGROUP	ANTI-A	HUMAN ANTI-A,B	ANTI-H LECTIN*	ANTI-A₁ LECTIN†	SOLUBLE ANTIGENS IN SALIVA‡	ANTI-A ₁ IN SERUM
A ₃	++mf	++mf	+++	0	A and H	0 to ++§
A _x	weak/0	+ to ++	++++	0	Н	0 to ++§
A _{el}	0	0	++++	0	Н	0 to ++§
	1					

mf, Mixed field.

*Ulex europaeus.

†Dolichos biflorus.

‡If secretor.

§Variable occurrence of anti-A₁.

Importance of Subgroup Identification

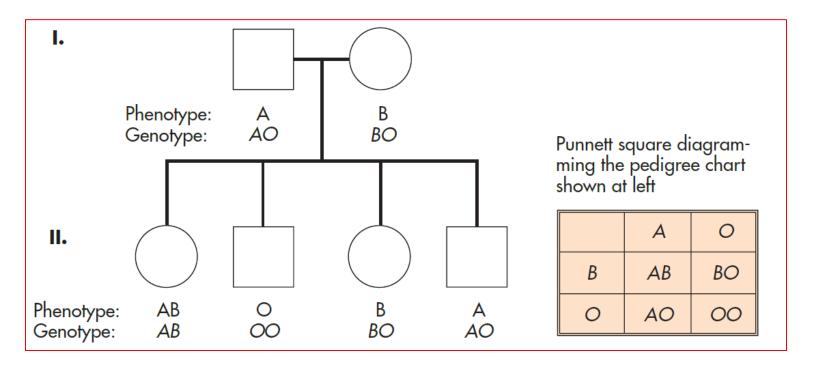
- Although subgroups of A and B are of academic interest \heartsuit failure to detect a weak subgroup could have serious consequences.
 - ✓ If a weak subgroup in a recipient be classified as group O ∽ would probably not harm
 - ✓ If a weak subgroup in a donor be classified as group O ∽ subsequent labeling of donor unit as group O (rather than group A) → ↓ survival of transfused RBCs in a group O recipient.

Genetic feature of ABO blood group system

- □ Inheritance of genes from ABO locus (on Ch. 9) → follows laws of Mendelian genetics
- ✤ An individual inherits 2 ABO genes (one from each parent).
- □ The 3 major alleles of ABO BG system are A, B, and O.
 - ✓ The A gene → divided into A^1 and A^2 alleles.
 - ✓ The A and B genes \rightarrow codominant mode of inheritance ح O allele is recessive.
 - ✓ The A^1 allele is dominant over A^2 allele ☞ both are dominant over O allele.

Correct use of terminology regarding ABO blood group system.

- ✓ for alleles A^1 and A^2 \bigcirc the numbers → superscripts
- ✓ for A_1 and A_2 phenotypes G the numbers → subscript


Genetic feature of ABO blood group system

- □ O allele is recessive \Rightarrow it is not always possible to determine ABO genotype from corresponding phenotype without family studies or molecular analysis.
 - ✓ RBCs can be phenotyped only for presence or absence of antigens
 - ✓ RBCs cannot be genotyped → unless a family study has been performed with conclusive results \bigcirc a genotype is only a probable interpretation of a

phenotype.

	ABO Phenotypes and Possible Genotypes			
PHENOTYPE	POSSIBLE GENOTYPES			
Group A1	$\begin{array}{c} A^{1}A^{1}\\ A^{1}A^{2}\\ A^{1}O\end{array}$			
Group A ₂	$\begin{array}{c} A^2 A^2 \\ A^2 O \end{array}$			
Group B	BB BO			
Group A ₁ B	$A^{1}B$			
Group A ₂ B	A^2B			
Group O	00			

ABO inheritance patterns

Group A and group B phenotypes \rightarrow may produce offspring with group AB, O, B, and A phenotypes \bigcirc if the parents' genotypes are AO and BO.

Landsteiner's rule.

П

- ✓ individuals possess ABO Ab against ABO Ag absent from their RBCs.
- an important consideration in selection of blood products for transfusion ABO antibodies exist in healthy individuals.
- \square ABO Abs \rightarrow were originally thought to be "naturally occurring."
- □ biochemical structures similar to A & B antigens are present in environment (in bacteria, plants, and pollen) \bigcirc environmental exposure to these → produce ABO Abs ⇒ non-RBC stimulated Abs is more appropriate.

- □ Newborns \rightarrow do not produce ABO Abs until 3–6 months of age.
 - ✓ ABO Abs detected prior to this time \rightarrow are maternal in origin.
- $\square Maximal ABO titers \rightarrow have been reported in children 5-10 years old.$
 - ✓ As a person ages $\rightarrow \downarrow$ Ab titers \bigcirc may cause problems in ABO phenotyping.

Reduction in ABO Antibody Titers
Age-Related
Newborn Elderly
Pathologic Etiology
Chronic lymphocytic leukemia Congenital hypogammaglobulinemia or acquired hypogammaglobulinemia Congenital agammaglobulinemia or acquired agammaglobulinemia Immunosuppressive therapy Bone marrow transplant Multiple myeloma

Ig Class

- anti-A (in group B) and anti-B (in group A) ~ are primarily of IgM, along with small amounts of IgG.
- ✓ anti-A & anti-B in group O ∽ are primarily of IgG class
- Hemolytic Properties and Clinical Significance
- IgG & IgM forms of anti-A and anti-B → capable of binding & activation of complement ⇒ hemolysis of RBCs (in-vivo or in-vitro)
 - ✓ ABO Abs are clinical significance in transfusion ∽ precipitating an acute-HTR

In Vitro Serologic Reactions

- ABO Abs → directly agglutinate RBCs suspension in a physiologic saline (do not require potentiators)
 - ✓ optimally reactive \rightarrow in IS-phases at RT (15-25° C)
 - ✓ do not require an incubation period

Human anti–A,B.

- ✓ in group O individuals → possesses unique activities beyond mixtures of anti-A and anti-B
- 1. is capable of recognizing a common antigenic determinant (a structure shared by A and B Ags) \bigcirc agglutinate RBCs of group A, B, and AB
- also agglutinate RBCs of infrequent subgroups of A (particularly A_x)
 ☑ before advent of mAbs ∽ human anti-A,B was widely used to detect these infrequent subgroups in routine ABO typing.

Anti-A₁

- Anti-A produced by group O and $B \rightarrow$ can be separated (by adsorption and elution techniques) into 2 components: anti-A and anti-A₁.
- 1. Anti- A_1 :
 - \checkmark is specific for A₁ RBCs \backsim does not agglutinate A₂ RBCs
 - ✓ optimal reactivity: at RT or lower
 - not clinically significant for transfusion purposes
 - - ① it causes problems with ABO phenotyping results
 - ② incompatible crossmatches on IS
- 2. Anti $-A_2$ does not exist

ABO phenotyping

П

- ABO phenotyping is performed by 2 methods.
 - 1. Forward grouping \rightarrow testing of RBCs for presence of ABO- Ags
 - 2. Reverse grouping \rightarrow testing of serum (plasma) for expected ABO- Abs
- According to Standards for Blood Banks and Transfusion Services \rightarrow both methods must be performed for donor and recipient.
 - ✓ RBCs \rightarrow must be tested using anti-A and anti-B reagents
 - ✓ serum or plasma → must be tested for expected ABO Abs using reagent A1 and B RBCs

A	BO Phenotype Re	eactions			
RED CELL REACTIONS WITH			SERUM OR PLASMA REACTIONS WITH		
PHENOTYPE	ANTI-A	ANTI-B	A ₁ CELLS	B CELLS	
Group A	+	0	0	+	
Group B	0	+	+	0	
Group O	0	0	+	+	
Group AB	+	+	0	0	
+, Agglutination; 0, no agglutination.					

ABO phenotyping

- Anti-A,B reagent (Human or mAb blend) \rightarrow is not required in ABO typing
- for cord blood and infants <4 months \rightarrow only Forward grouping
- Serum testing (reverse grouping) \bigcirc provides a control for RBC testing
 - ✓ ABO discrepancy \rightarrow occurs when RBC testing does not agree with expected serum testing.
 - ✓ any discrepancy in ABO testing should be resolved.
 - 1) before transfusion of recipients or
 - 2) before labeling of donor units

Selection of ABO-compatible RBCs and Plasma products for transfusion

In routine transfusion practices.

- ✓ <u>ABO-identical</u> (ABO –specific) blood products (RBCs and plasma) \rightarrow are usually transfused to recipient
- when identical ABO phenotype is unavailable.
 - ✓ ABO –compatible blood \rightarrow may be issued to recipient
 - ♦ for RBC transfusions, ABO compatibility is defined as ∽ serologic compatibility between ABO-Abs in recipient's serum and ABO-Ags on donor's RBCs.
 - ABO compatibility applies to RBC transfusions \bigcirc not to whole blood (WB)
 - ✓ for WB ∽ ABO-identical units must be transfused
- Persons with group O are called universal donors ~ their RBC product can be transfused to any ABO phenotype.
 - ✓ Group O RBCs \rightarrow can be used for emergency release of donor units
- Recipients with group AB are considered universal recipients concerned concerned recipients concerned recipient

Selection of ABO-compatible RBCs and Plasma products for transfusion

- When **plasma products** are transfused.
 - ✓ the ideal situation ∽ selection of ABO-identical phenotype
 - when ABO- identical phenotype is unavailable compatible plasma (is the reverse of RBC transfusion)
- For transfusion of plasma.

- ✓ group $AB \rightarrow$ the universal donor
- ✓ group $O \rightarrow$ the universal recipient

	Practical Application: ABO Compatibility for Whole Blood, Red Blood Cells, and Plasma Transfusions						
RECIPIENT		DONOR					
ABO PHENOTYPE	WHOLE BLOOD	WHOLE BLOOD RED BLOOD CELLS PLASMA					
Group A	Group A	Groups A, O	Groups A, AB				
Group B	Group B	Groups B, O	Groups B, AB				
Group AB	Group AB	Groups AB, A, B, O	Group AB				
Group O	Group O	Group O	Groups O, A, B, AB				

Classic Bombay phenotype

- Both RBCs and secretions \rightarrow are deficient in H and ABO antigen expression.
 - $\checkmark \quad \text{RBC testing} \rightarrow \text{group O}$

П

- ✓ Serum testing \rightarrow reactions similar to group O individuals.
- ✓ Anti-H in Bombay phenotype is of clinical significance → is capable of activity at 37° C and complement activation ⇒ hemolysis.
- ♦ >130 Bombay phenotypes have been reported ∽ greater incidence in India.
- An individual with homozygous for <u>h allele</u> (hh) (Bombay phenotype) \rightarrow does not produce L-fucosyltransferase \Rightarrow not H-Ag on RBCs.
- □ H antigen is the building block for development of A and B antigens \Rightarrow lacks expression of H and ABO antigens.
- Transfusion for these individuals \rightarrow an especially difficult problem \bigcirc they are compatible only with Bombay phenotype.
 - ✓ If transfusion is necessary → stored autologous units, siblings, and rare donor files are potential options.

Secretor status

- There are 2 allelic genes at this locus. Se and se.
- The gene Se allele product \rightarrow FUT2 (L-fucosyltransferase).
 - preferentially adds L-fucose to type 1 oligosaccharide chain structures in secretory glands.
 - \checkmark may also act on type 2 chains in the secretory glands.
 - FUT1 (H gene) \rightarrow preferentially adds fucose to type 2 chains.
- The FUT2 gene \rightarrow responsible for regulating expression of soluble A, B, and H antigens on glycoprotein structures located in body secretions such as saliva.

Secretor status

- ♦ An individual with genotype SeSe or Sese \rightarrow is classified as a secretor.
 - ~80% of opulation are secretors \bigcirc express soluble forms of H antigens in secretions \rightarrow can be converted to A or B antigens (by A and B glycosyltransferases) \rightarrow found in saliva, urine, tears, bile, amniotic fluid, breast milk, exudate, and digestive fluids.
- An individual with genotype sese \rightarrow is classified as a **nonsecretor** $\frown \sim 20\%$ of population.
- allele se, is amorph \Rightarrow a homozygote does not convert antigen precursors to soluble H \rightarrow no soluble H, A or B antigens present in body fluids.

Ex	Example 1						
Genes inherited Ar					Antigen expression		
					RBC	Saliva	
	AB	HH	SeSe		а <i>,</i> В, Н	А, В, Н	
	AB	ΗΗ	sese		а <i>,</i> В, Н	None	
Ex	Example 2						
	Genes inherited Antigen expression						
					RBC	Saliva	
	00	HH	Sese —		Н	Н	
	00	НН	sese —		н	None	

Thank You