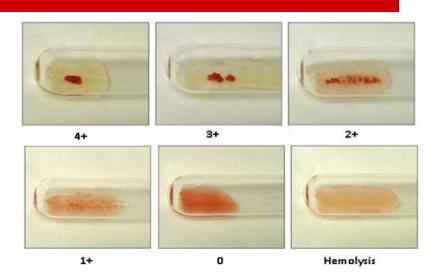
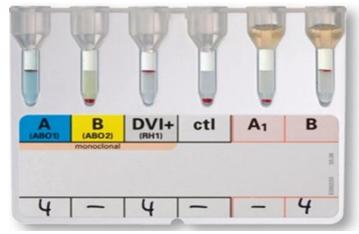

ABO discrepancies Recognition and Resolution

Dr Ali Maleki PhD in Laboratory Hematology & Transfusion Sciences Kermanshah University of Medical Sciences Ali.maleki@kums.ac.ir

Recognition and resolution of ABO discrepancies


Discrepancy: results of Forward do not agree with Reverse grouping



Recognition and resolution of ABO discrepancies

- ☐ Discrepancies may be indicated when following observations are noted:
 - 1. Agglutination strengths of reactions \bigcirc are weaker than expected
 - ✓ agglutination reactions in Forward grouping \rightarrow are 3+ to 4+
 - ✓ agglutination reactions in Reverse grouping \rightarrow are 2+ to 4+
 - 2. Expected reactions in Forward & Reverse grouping are missing
 - e.g., group O individual \rightarrow missed one or both reactions in serum testing with reagent A_1 and B cells
 - 3. Extra reactions are noted in either Forward or Reverse grouping

Recognition and resolution of ABO discrepancies

- \square The first step in the resolution \rightarrow identify the source of problem: .
 - 1. technical problems
 - 2. sample-related problems

Technical errors in ABO typing

- ☐ **Technical errors** can be classified into several categories:
 - ① Identification and documentation errors ② Reagent and equipment errors

③ SOP errors

Practical Application: Guidelines for Investigating ABO Technical Errors

Identification or Documentation Errors

Correct sample identification on all tubes

Results are properly recorded

Interpretations are accurate and properly recorded

Reagent or Equipment Errors

Daily quality control on ABO typing reagents is satisfactory

Inspect reagents for contamination and hemolysis

Centrifugation time and calibration are confirmed

Standard Operating Procedure Errors

Procedure follows manufacturer's directions

Correct reagents were used and added to testing

Red blood cell suspensions are at the correct concentration

Cell buttons are completely suspended before grading the reaction

Technical errors in ABO typing

- When a technical error is discovered and corrected \rightarrow ABO discrepancy can be quickly resolved with repeated testing
 - ✓ if discrepancy still exists ¬ possibility of a problem related to sample itself (related to patient or donor) should be considered.

Sample-related ABO discrepancies

- an be divided into 2 groups:
 - 1. Problems that affect RBC testing (Forward grouping)
 - 2. Problems that affect serum (plasma) testing (Reverse grouping)
- A logical approach is condetermine the **side** of ABO test (RBC testing or serum testing)
 - \checkmark strengths of agglutination reaction (in both Forward & Reverse grouping) \rightarrow is a key point
- the most <u>commonly</u> encountered ABO discrepancies in Lab relating to weak or missing ABO Abs in <u>serum testing</u>

Sample-related ABO discrepancies

Overviews of ABO Discrepancies		
PROBLEMS WITH RED CELL TESTING	PROBLEMS WITH SERUM/PLASMA TESTING	
Extra antigens Group A with acquired B antigen B(A) phenotype Polyagglutination Rouleaux Hematopoietic progenitor cell transplants	Extra antibodies A subgroups with anti-A ₁ Cold alloantibodies Cold autoantibodies Rouleaux IVIG	
Missing or weak antigens ABO subgroup Pathologic etiology Transplantation	Missing or weak antibodies Newborn Elderly Pathologic etiology Immunosuppressive therapy for transplantation	
Mixed-field reactions Transfusion of group O to group A, B, or AB Hematopoietic progenitor stem cell transplants A ₃ phenotype		

Sample-related ABO discrepancies

- ☐ Discrepancies Associated with **Red Cell Testing** (forward grouping):
 - 1. extra antigens present
 - 2. missing or weak antigens
 - 3. mixed-field reactions

Extra antigens

Group A with acquired B antigen

B(A) phenotype

Polyagglutination

Rouleaux

Hematopoietic progenitor cell transplants

Missing or weak antigens

ABO subgroup

Pathologic etiology

Transplantation

Mixed-field reactions

Transfusion of group O to group A, B, or AB Hematopoietic progenitor stem cell transplants A₃ phenotype

- Acquired B Antigen

Group A with Acquired B Antigen			
ABO Testing Results			
Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A	Anti-B	A_1	В
4+	1+	0	4+

■ EVALUATION OF ABO TESTING RESULTS

- 1. agglutination of patient's RBCs with anti-A is strong (4+).
- 2. agglutination of patient's RBCs with anti-B is $1+ \circlearrowleft$ weaker than usually expected (3+ to 4+) \rightarrow in RBC testing result \rightarrow group AB
- 3. The results of serum testing reactions \rightarrow group A.

☐ CONCLUSION:

✓ group A with acquired B

- Acquired B Antigen

☐ Background information

- only in group A_1 individuals with diseases of lower GI tract \rightarrow cancers of colon and rectum, intestinal obstruction, or gram-negative septicemia
- ✓ the most common mechanism.
 - \bullet a bacterial <u>deacetylating</u> enzyme \rightarrow alters A ID-sugar (N-acetylgalactosamine) by removing <u>acetyl</u> group \rightarrow resulting sugar (galactosamine) resembles <u>B ID-sugar</u> (D-galactose) \frown cross-reacts with many anti-B reagents
 - \diamond the observation was linked to \rightarrow use of ES-4 mAb anti-B clone at pH 6.5-7.0
 - if formulation of clone acidified to pH $6.0 \rightarrow$ acquired B antigen not observed

- Acquired B Antigen

☐ RESOLUTION OF ABO DISCREPANCY

- 1. Determine the patient's diagnosis and transfusion history.
 - ✓ First step: obtain more information about patient → may provide additional clues about cause of ABO discrepancy
- 2. Test patient's serum against autologous RBCs.
 - ✓ In acquired B Ag → Anti-B in patient's serum, does not agglutinate autologous RBCs
- 3. Test RBCs with.
 - ✓ <u>additional monoclonal anti-B</u> reagents ∽ from other manufacturers (that not to react with acquired B Ag)
 - ✓ a source of human polyclonal anti-B
- for transfusion purposes patients should receive RBCs of group A

- B(A) Phenotype

B(A) Phenotype			
ABO Testing Results			
Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A	Anti-B	A_1	В
1+	4+	4+	0

■ EVALUATION OF ABO TESTING RESULTS

- 1. agglutination of patient's RBCs with anti-A is weak (1+).
- 2. agglutination of patient's RBCs with anti-B is strong $(4+) \Rightarrow$ results of serum testing \rightarrow are typical of a group B individual.

☐ CONCLUSION:

✓ a group B with an extra reaction with anti-A in RBC testing \circ a possible B(A) phenotype

- B(A) Phenotype

BACKGROUND INFORMATION

- B(A) phenotype \rightarrow observed as a result of \uparrow sensitivity of mAb reagents
 - ✓ These reagents ← can detect trace amounts of A or B antigens that are nonspecifically transferred by glycosyltransferase enzymes
- B gene enzyme (Galactosyltransferase) \rightarrow transfers trace amounts of N-acetylgalactosamine (ID-sugar for A-Ag) + D-galactose (ID-sugar for B-Ag) to H-Ag
 - ✓ trace amounts of A-Ags \circ are detected with certain mAb reagents
 - \diamond a similar mechanism \rightarrow can cause A(B) phenotype

RESOLUTION OF ABO DISCREPANCY

- 1. Determine patient's diagnosis and transfusion history.
- 2. Test RBCs with:
 - ✓ additional mAb anti-A reagents from other manufacturers or
 - ✓ a source of human polyclonal anti-A

Missing or Weakly Expressed Antigens

- In this category of ABO discrepancies \rightarrow RBCs demonstrate weaker or no reactions with anti-A and anti-B reagents
- ☐ Phenomena associated with this category include:
 - 1. ABO subgroups
 - 2. Weakened A and B antigen expression \rightarrow in leukemia or Hodgkin's disease

Missing or Weakly Expressed Antigens

- Subgroup of A

Subgroup of A			
ABO Testing Results			
Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A Anti-B		A_1	В
0	0	0	3+

■ EVALUATION OF ABO TESTING RESULTS

- 1. No agglutination of patient's RBCs with anti-A and anti-B reagents \Rightarrow patient appears to be a group O phenotype.
- 2. The results of serum testing \rightarrow typical of a group A individual
- CONCLUSION: reactions are characteristic of a missing Ag (in RBC testing):
 - \checkmark Serum testing results \rightarrow are those expected in a group A individual.
 - \checkmark Anti-A (found in group O individuals) \rightarrow is absent in serum testing.

Missing or Weakly Expressed Antigens

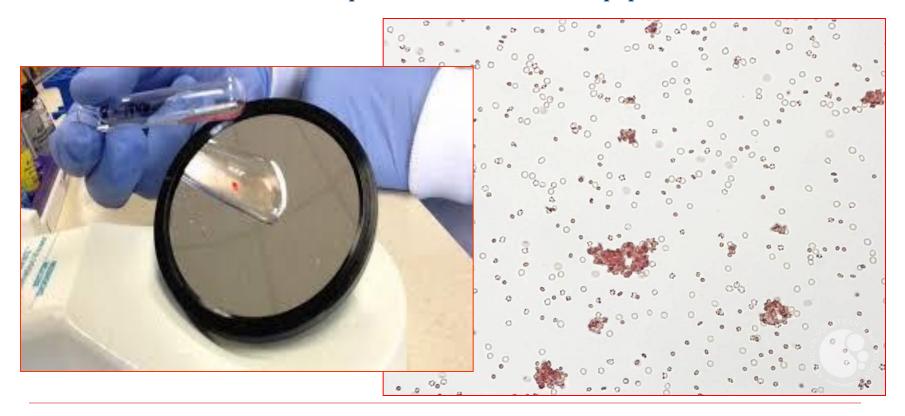
- Subgroup of A

☐ BACKGROUND INFORMATION

- weak or missing reactions with antiserum reagents \rightarrow correlate with subgroups of A and B.
 - ✓ Subgroups of A: are <1% of group A population
 - ✓ subgroups of B: are even rarer

☐ RESOLUTION OF ABO DISCREPANCY

- 1. Determine the patient's diagnosis and transfusion history.
- 2. Repeat RBC testing with:
 - ✓ extended incubation times ∽ may enhance Ag-Ab reaction
 - ✓ human polyclonal anti-A,B or monoclonal blend anti-A,B


Additional Testing Results		
Anti-A,B		
Patient red cells 1+		
Conclusion: Probable subgroup of A		

Additional Testing Results		
Anti-A,B		
0		

Next Step: Perform adsorption and elution studies with anti-A; these studies assist in determining the presence of A antigens on the patient's red cells

Mixed-Field (MF) Reactions

- \square MF reactions \rightarrow can occur with either anti-A or anti-B reagents.
 - ✓ a MF-reaction contains: agglutinates + a mass of un-agglutinated RBCs
 - \checkmark MF-reaction \rightarrow is due to presence of 2 distinct cell populations

Mixed-Field (MF) Reactions

- ☐ MF-reactions can occur in:
 - 1. transfusion of group O RBCs to group A, B, or AB individuals,
 - 2. recipients of HPC transplants,
 - 3. individuals with A_3 phenotype,
 - 4. patients with Tn-polyagglutinable RBCs

Mixed-Field Reactions

Group B Patient Transfused with Group O RBCs			
ABO Testing Results			
Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A Anti-B		A_1	В
0	2+mf	4+	0

■ EVALUATION OF ABO TESTING RESULTS

- 1. The strength of agglutination reaction with $\underline{\text{anti-B}} \rightarrow \text{is } \underline{\text{weaker}}$ than expected for group B individuals \bigcirc Mixed-field reaction (a 2+ agglutination with a sufficient number of un-agglutinated cells)
- 2. The results of serum testing \rightarrow are typical of a group B individual.
- CONCLUSION: a group B individual possibly transfused with group O RBCs

Mixed-Field Reactions

☐ BACKGROUND INFORMATION

- ✓ In certain situations, ABO-identical RBC products might not be available for transfusion \rightarrow group O RBC products are transfused
 - ❖ If many group O RBC units are transfused → MF- reactions may appear in ABO red cell testing.

☐ RESOLUTION OF ABO DISCREPANCY

- 1) Determine the patient's diagnosis and recent transfusion history.
- 2) Determine whether the patient is a recent HPC recipient.
- 3) Investigate pre-transfusion ABO phenotype history, if possible.

ABO Discrepancies Associated with Reverse grouping

- ☐ ABO discrepancies that affect serum testing include:
 - 1. presence of additional Abs (other than anti-A and anti-B)
 - 2. absence of expected ABO Ab reactions
 - ✓ The most commonly encountered ABO discrepancies → absence of expected ABO Ab reactions.

PROBLEMS WITH SERUM/PLASMA TESTING

Extra antibodies

A subgroups with anti-A₁

Cold alloantibodies

Cold autoantibodies

Rouleaux

IVIG

Missing or weak antibodies

Newborn

Elderly

Pathologic etiology

Immunosuppressive therapy for transplantation

- detection of anti-A₁

Group A ₂ with Anti-A	1		
ABO Testing Results			
Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A	Anti-B	A_1	В
4+	0	2+	4+

■ EVALUATION OF ABO TESTING RESULTS

- 1. agglutination pattern with anti-A and anti-B reagents → typical of a group A individual.
- 2. results of serum testing with A_1 and B red cells \rightarrow indicate a group O individual

CONCLUSION

✓ an extra reaction in <u>serum testing</u> with reagent A_1 RBCs (2+) \sim possible explanations include: anti-A1, cold allo-Ab, cold auto-Ab, or rouleaux.

- detection of anti-A₁

RESOLUTION OF ABO DISCREPANCY

- 1. Determine the patient's diagnosis and transfusion history.
- 2. Test the patient's RBCs with anti- A_1 lectin

Additional Testing Results		
Patient Red Cells Tested with Anti-A ₁ Lectin Conclusion		
0	Subgroup of A; suspect anti-A ₁ antibody	

3. Test the patient's serum with 3 examples of A_1 and A_2 reagent RBCs \circ to confirm presence of anti- A_1 antibody

Additional Testing Results					
Patient Serum Tested with					
A ₁ Cells	A ₁ Cells A ₂ Cells A ₂ Cells A ₂ Cells				
2+ 2+ 2+ 0 0 0					

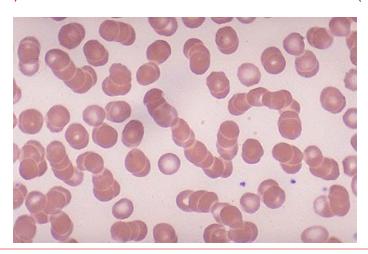
- \square CONCLUSION: ABO discrepancy resulting from group A_2 with anti- A_1 .
 - ✓ Agglutination is observed with A_1 RBCs → providing evidence for anti- A_1 . Anti- A_1 may be present in 1-8% of group A_2 phenotype.

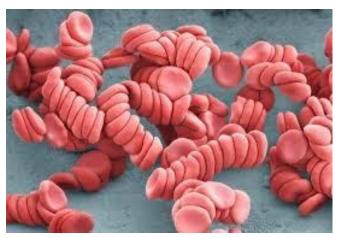
- Rouleaux

Rouleaux				
ABO Testing Results				
Patient Red	Patient Red Cells with Patient Serum with Reagent Red Cells			
Anti-A	Anti-B	A_1	В	
4+	4+	2+	2+	

■ EVALUATION OF ABO TESTING RESULTS

- 1. Strong agglutination reactions are observed in RBC testing \rightarrow consistent with expected results of group AB.
- 2. Serum testing results \rightarrow consistent with those of a group O.

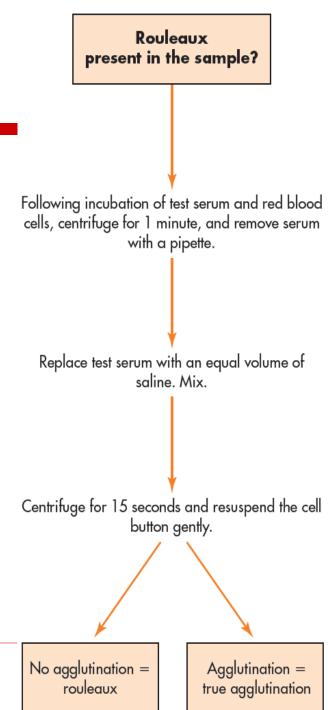

CONCLUSION


 \diamond possibility of extra reactions in serum testing \rightarrow because of <u>allo-Ab</u>, <u>auto-</u>Ab, or rouleaux.

- Rouleaux

■ BACKGROUND INFORMATION

- Rouleaux can produce false-positive agglutination.
 - ✓ RBCs resemble stacked coins under microscopic examination.
 - \checkmark ↑ concentrations of serum proteins \rightarrow can spontaneous rouleaux of RBCs.
 - ✓ Diseases associated with rouleaux \rightarrow MM and WM
- problems with rouleaux.
 - 1) extra reactions in serum testing in ABO phenotyping
 - 2) extra reactions in ABO RBC typing (if unwashed RBC suspensions are used)



- Rouleaux

RESOLUTION OF ABO DISCREPANCY

- 1. Determine the patient's diagnosis and transfusion history.
- 2. Wash RBC suspension and repeat the phenotyping.
- 3. Perform saline replacement technique of for distinguish true agglutination from rouleaux

Missing or Weak ABO Antibodies in Serum/Plasma Testing

☐ ABO Abs may be missing or weakened in certain patient-related situations.

Missing or Weak ABO Antibodies in Serum or Plasma Testing					
ABO Testing Results					
Patient Red Cells with Patient Serum with Reagent Red Cells					
Anti-A	Anti-B	A_1	В		
0 0 0					

- EVALUATION OF ABO TESTING RESULTS
 - 1. agglutination pattern with anti-A and anti-B reagents \rightarrow group O.
 - 2. results of serum testing with reagent A1 and B red cells \rightarrow group AB.
- CONCLUSION
 - ✓ missing serum reactions with reagent A1 or B cells.

Missing or Weak ABO Antibodies in Serum or Plasma Testing

■ BACKGROUND INFORMATION

- investigation of patient's history (including age, diagnosis, Ig levels) provides clues to missing reactions in serum testing.

 - \checkmark patient's diagnosis is essential $\frown \downarrow Ig$ levels are associated with several pathologic states.
- patient's diagnosis, Ig levels and serum protein electrophoretic patterns →
 are helpful data in identification & resolution of cause for this ABO
 discrepancy.
- \Leftrightarrow for cord blood and infants <4 months \rightarrow only Forward grouping

Missing or Weak ABO Antibodies in Serum or Plasma Testing

■ RESOLUTION OF ABO DISCREPANCY

- 1. Determine patient's diagnosis, age, and Ig levels, if available.
- 2. Incubate serum testing for 15 minutes at RT \rightarrow then centrifuge and examine for agglutination \bigcirc incubation step often solves the problem.
- 3. If the results are still negative \rightarrow place serum testing at 4° C for 5 minutes with an autologous control.
 - ✓ The autologous control validates the test by ensuring that positive reactions are not attributable to a cold autoantibody.

Interpretation of Additional Testing Results				
4° C	A ₁ Red Cells	B Red Cells	Autologous Red Cells	Conclusion
Patient serum	Pos	Pos	Neg	Group O
Patient serum	Pos	Pos	Pos	Cold autoantibody

